(vhds.baothanhhoa.vn) - Tương lai của nền kinh tế di động dường như là vô hạn. Đó là nhận định của tác giả Anindya Ghose trong cuốn “Chạm để mở nền kinh tế di động”.
LuG7g1194bqt4buJNuG7oeG7oeG7tnvhu51Q4buFcOG7iWJ7IeG6rOG7gznEqX3huqvDqn3EqcahfWrhurtqfeG7i+G7hWrhu4N9cOG6uX3huqnhu4V94bqrw7Vq4buHLi/hu4NdIS7hu5194bqt4buJNuG7oeG7oeG7tnvhu53hu4JiNuG6qXshUMO54buTauG7h33hu4k24buFfeG6rXU2fWrhurtqfeG7i+G7hWrhu4N9cOG6uX3huqnhu4V94bqrw7Vq4buHfeG6qcO54buVauG7h31q4buDw7l94buJOH3hu6vDsn3hu4M5aj994bqqbH3hu4k4fWrhu4PhurVqfeG6q2hq4buDfeG6rXU2fXA34bqtfeG7h+G7hWF94buzauG7hWrhuqnhu682feG7huG7g2vhu6FifXDhu59rauG7h33huq1x4buNan3igJzhuqzhu4M5xKl94bqrw6p9xKnGoX1q4bq7an3hu4vhu4Vq4buDfXDhurl94bqp4buFfeG6q8O1auG7h+KAnT8uL+G7nSEu4budfeG6reG7iTbhu6Hhu6Hhu7Z74bud4bqma+G6qeG7r3shLuG7hcSp4buHfeG6reG7iTbhu6Hhu6Hhu7Z74bqpcOG7g3HEqeG6p33hu4XhuqxianBi4bufe33hu6Fw4buv4buJYuG7tnvhu7Hhu4Xhuqlw4buDJX0yW1vhu53hu60qfeG7g2Lhu4Xhu4fhu4NwJX0yMjXhu53hu60qe33hu6Hhu5/huq3hu7Z7Ly/huq3huqlqP+G6pzZrcOG7gzZq4buD4buDazY/4burai/huqli4buh4buLcGvhu50vamLhu7Hhu6EvIiAwMy9dMzPhuqkgWzUgXSJdcF0gNVvhu4k0LV0gIuG6qV1dXSJdIjBwIjEwIuG7iTMtNj/hu7Fi4bqn4bude3024buJcOG7tnvhuqzhu4M5xKl94bqrw6p9xKnGoX1q4bq7an3hu4vhu4Vq4buDfXDhurl94bqp4buFfeG6q8O1auG7h3t94bux4buF4bqpcOG7g+G7tnsyW1t7feG7g2Lhu4Xhu4fhu4Nw4bu2ezIyNXt9LyEuL+G7nSEu4budfeG6reG7iTbhu6Hhu6Hhu7Z74bud4bqma+G6qeG7r3sh4bqoxak2fXDhu5/DqWp9auG7h+G7g+G7hcOpan3huq3hu6VxfeG6reG7g3Hhu6/DqWp94buh4bqxcX3huq11Nn3EqWdq4buDfcahfcSow70mfeG6reG7g+G6sXF94bu1feG7qzh94bqt4buD4bqxcX3hurBxJn3huq3hu4NpfeG7nzZ9auG7h+G7g2jhuq3hu4N94buJdn1w4bufa2rhu4d94buDOGrhu4N94bur4buFfeG6rXU2fWrhu4fDueG7leG7hX1w4buFw6lxfeG6qXNq4buHfeG6rcO6auG7h31q4buDw7l9NX3huqvDtWrhu4d94buJxanhuq194buDOGrhu4N94bur4buFfeG6rXU2fWrhu4fDueG7leG7hX1w4buFw6lxfeG6qXNq4buHJn3hu4bhu4Nr4buhYn3huqvDoX1q4buD4bq1an3huqtoauG7gyV9SuG7h8O54buV4buFfXDhu4XDqXF94bqpc2rhu4d9cDlrfeG7nzZ94buL4buDa33huqnhu6l94buJ4buF4bq9cX3huqfhuqNq4buHfeG6rTfhuq3hu4N94bqt4buDOcSpfeG7qzhrfeG6reG7g+G7heG6ueG6rX3huqvhu4Xhur1qfXDhu4NrOeG7hX3huq11Nn3EqWdq4buDfeG6rW1qfeG6rTfhuq194bqpazZq4buDfWrhu4fhu4Phu4Xhur3hu5194bqtbH1w4buDw6p94buL4buDNuG7hX1w4buDN+G6rX3hu4vhu4NrfeG6qeG7qX3hu4nhu4Xhur1xfWo44buvfeG6q8OqfeG7iTjEqX3huq3hu4N1feG7oeG7peG6rX3EqTlq4buDfeG6rXU2fWrhurtqfeG7i+G7hWrhu4N9cOG6uX3huqnhu4V94bqrw7Vq4buHPy4v4budIS7hu5194bqt4buJNuG7oeG7oeG7tnvhu53huqZr4bqp4buveyHhu6A34bqt4buDfeG7h+G7j8SpfV0wfeG6reG7g8O54buTauG7h33huqvDueG7l+G6rX3hu4vhurlwfeG6reG6t3F94buH4buPxKl9IH3hu53hu4PhurNqP33hu5zhu4PhurNqfeG6q+G6s3F94buJdn3hu4fhu4Vh4buFfeG7gzhq4buDfeG7q+G7hX3huq1ran1q4buHw7nhu5Xhu4V94burOH3hu4M4auG7g31w4bufZ2rhu4N94bqtdTZ94bqt4buD4buF4bq54bqtfeG6q+G7heG6vWp9cOG7g2s54buFfeG6qeG7hX3huqvDtWrhu4d94bqt4buDa33huqvhurlqfWrhu4c44buvfeG7g8OyxKl9ajbhu68/feG7nOG7g+G6s2p9cOG7g+G7pX3hu4M24buFfeG7iTjEqX3hu5/Ds31q4buD4bupauG7h33huqvDtWrhu4d94buJxanhuq194buDZ2rhu4N9cOG7gzhq4buDfWrhurtqfeG7i+G7hWrhu4N9cOG6uX3huqnhu4V94bqrw7Vq4buHP33hu5zhu4PhurNqfSB9xKnGoX3hu582feG6rTfhuq194bqrw7Vq4buHfeG7icWp4bqtfeG6rcOyauG7h31q4buH4buD4bq9fXDhu4Phurl94buD4bq9fXDhu4Xhurnhu519cOG7g2JrPy4v4budIS7hu5194bqt4buJNuG7oeG7oeG7tnvhu53huqZr4bqp4buveyFQ4bufa2rhu4d94bqn4buN4buFfeG6rWFq4buDfeG7g+G6vX3hu6Hhu4Vq4buDfXDhu4M34buFfeG6q+G7heG6vWp9cOG7g2s54buFfeG6qeG7hX3huqvDtWrhu4d94bqrw6F94bqrbGrhu4d94buHbOG7nX3hu4Phu5NqfTBAfXDDtGrhu4d94buG4bqo4bucfXBrOGp94bqt4bqzcX074buh4buNfeG7ieG7heG6vXF9asOgxKl9IltdMSwmfeG7ieG7jeG7hX3hu6Hhu41q4buHfXDhu5/FqeG6rX1wceG7r+G6uWp9cOG7g8O54buVauG7h31w4bufxanhuq19auG7hzjhu6994bqtOGrhu4d94bud4buDw7R94bqn4buF4bq5an3hu4vhu4Phu4XhurlqfeG6reG7g3Jq4buHfXA2feG7h+G6s2p9auG7g8O5feG7rWLEqX3hu4k4feG6q+G7heG6u3F94buD4buFw6pqfWrhu4Phu4XDqWo/feG7nOG7g2Hhu4V94bqt4buDw6Bq4buHfeG7q+G7heG6veG6rX3huqc5an3hu53hu4N0fXDhu4Nxw7Xhuq194burOGt94bqt4buD4buF4bq54bqtfeG6q+G7heG6vWp9cOG7g2s54buFfeG6rWF94bur4bq7fcSpw6NwfeG6rWHEqX3hu61y4bqtfeG7ieG6pWp9cOG7hWrhu4N9cOG7g+G6s2p94buJOH3huqvhu4XhurtxfeG6reG7g3Jq4buHfXA2feG7icWpNn3huq3hu4NuaiR94buIdn3huqlrfeG7nzZ94bqr4buV4buFfeG6rXU2feG6rXHhu41qfeG7oTfhuq3hu4N94bqt4buDZmrhu4N94buJOH3huqvhu4V9cGfEqX3huq3hurFxfXDhu59hfeG7ieG7leG7hX3hu4k4xKl9cOG7g+G6uX1qOGt94burOH3huqfhuqNq4buHfeG6rTfhuq3hu4N9ajhrfcSpOH3EqThqfeG7g2dq4buDfXDhu59rauG7h33hu6Fx4buNcH3huq11Nn3huq3hu4Phu4Xhurnhuq194bqr4buF4bq9an1w4buDaznhu4V94bqp4buFfeG6q8O1auG7h33huq1sfXDhu4XhurvEqX1qw6Bq4buHfXDhu5/GoX1w4buDOGrhu4N94bujcWF94bqt4bqzcX3EqTZ9cOG7g3HhurVwfXDhu59rauG7h33hu4vhu4Vq4buDfeG6qWs2auG7gyR94buqOH3huq3hu4NmauG7g33huqvhu4XhurtxfeG6q2x94bqrw6F94bqp4bqlan3hu4nhu43hu4V9cDfhuq194buH4buFYX3hu4Phu5NqfTN9asOgxKl9O3Dhu6d9IltbNX3huqvhurlqfWrDoMSpfSJbXTIsfeG6q8OhfXBnxKl94buD4buFw6pxfeG7qzh9auG7h+G7g+G7hcOpan3huq3hu6VxfWrhu4fDueG7leG7hX1w4buFw6lxfeG6qXNq4buHfeG6qzZq4buHfeG7iTjEqX3hu4dnfeG7q+G7meG7hX3huq3hu4Phu4Xhurnhuq194bqr4buF4bq9an1w4buDaznhu4V9cOG7g8OyauG7h33EqeG7hWrhu4N94bqtdTZ94buDbn3hu6s4feG7iTjEqX3hu6E2a33huqlrNmrhu4N9auG7h+G7g+G7heG6veG7nX3huq1sfXDhu4PDqn1w4bq1an3huql0auG7h31w4buf4buFfXDhu4Phu6Xhuq19ajjhu6994bqrw6p94bqtYeG7hX1w4buF4bq5an3hu6Fhan3hu53hu4PDosSpfeG7qzh94bqpaOG6reG7g33hu6t0feG6rXU2feG7g24/Li/hu50hLuG7nX3huq3hu4k24buh4buh4bu2e+G7neG6pmvhuqnhu697IUrhu4fDueG7leG7hX1w4buFw6lxfeG6qXNq4buHfeG6reG7gznEqX3hu6s4a33huq3hu4Phu4Xhurnhuq194bqr4buF4bq9an1w4buDaznhu4V9cOG7g8OyauG7h33EqeG7hWrhu4N94burOH3hu6tx4buNcCZ9cOG7p33huqtsfXA5a33hu582feG7i+G7g2t94bqp4bupfeG7ieG7heG6vXE/feG6qGs2auG7g31q4buH4buD4buF4bq94budfeG6rWx9cOG7g8OqfeG6reG7gznEqX3hu6s4feG7i+G7gzbhu4V9cOG7gzfhuq194buJceG7j2rhu4d94bqp4bupfeG7ieG7heG6vXF9ajjhu6994bqrw6p9cOG7hcOpan3huqtrN2p94bqtN+G6rX3hu6HGoX1w4buDZuG6reG7g33huq11Nn3huq3hu4NyauG7h31wNn3hu6s4feG7icWpNn3huq3hu4Nuan3huq034bqtfeG7ieG7leG7hX3huq3hu4M4a33hu4M4auG7h33hu53hu4NzfeG7g+G7l+G7nT994bqsa2p94bqrw7nhu5Vq4buHfeG7gzbhu4V94bqt4buD4buF4bq7cX1qOOG7r33huqtixKl94buJOeG7hX3huq1hxKl94buH4buFN+G6rX3hu4fhurNqfeG7h8O64buFJn1w4buD4bqxan1w4buDccO14bqtfWrhu4PDuWrhu4d94bqr4bqz4buvfWFrfeG6qeG7heG6vXE/Li/hu50hLuG7nX3huq3hu4k24buh4buh4bu2e+G7neG6pmvhuqnhu697IeG7oDZxfeG7i+G7g+G7hX3huqtu4bqtfeG6rXHhu41qfeG7oTfhuq3hu4MmfeG6reG7g3Jq4buHfXA2feG7oWV94buD4buFw6pxfeG6q8O54buX4bqtfeG6rTfhuq3hu4N9cOG6scSpfeG7iXZ94bur4bq1an3hu4M4auG7g33huqvDoX3hu4NnauG7g31w4buDOGrhu4N9asOpan3hu4M4auG7g33hu6vhu4V94buhxrB94bqpdGrhu4d94bqr4buF4bq9an1w4buDaznhu4V94bqp4buFfeG6q8O1auG7h33huq11Nn3huq1ran1q4buHw7nhu5Xhu4V9auG7g8O5fXDhu4Phurl9ajhrP31K4buD4bupauG7h33hu4vhu4XhurlqfXDhu4Phu6Xhuq19cOG7n2tq4buHfeG6rXHhu41qfeG7oTfhuq3hu4N94buhZX1w4bufNmt94bujceG7r+G6u2p94bqt4buDa33huqvDteG6rX3hu4fhu4VhfeG7i+G7gzbhu4V9cOG7gzfhuq19auG7g+G7qWrhu4d94bqt4buTfeG7g8O14buFfeG6reG7g8O5Nn1w4bunauG7h33huq1sfXDhu6d9auG6u2p94buL4buFauG7g31w4bq5feG6qeG7hX3huqvDtWrhu4d94bqrNmrhu4d94bqt4buD4buVfeG6q+G7l+G7hX3hu53hu4NmNn1w4bufw7nhu5nhuq0mfeG7h+G7hWHhu4V94bujceG7r+G6uXB94bqtN+G6rX3EqeG6sXF9cOG7g3HhuqVqfXDhu59rauG7h33hu4M4auG7g33hu6vhu4V94bqtdTZ9auG7h8O54buV4buFfXDhu4XDqXF94bqpc2rhu4cmfeG6rXNq4buHfeG7iXLhuq194buJOMSpfXDhu4NvNn3EqcOhan3hu4NuP33huqxx4buN4buFfeG6rXNq4buHJn3huqvhurHhu6994bqtw7pq4buHfeG7iTh94bqtceG7jWp94buhN+G6reG7g31qbOG7hX3hu6vhurt94buDOGrhu4N94bur4buFfeG6rWtqfWrhu4fDueG7leG7hT99SuG6uXF94bqnOWp9xKlx4buNan1w4buD4bq3cX3hu4Phu4XDqnF94buhxal94buH4buFNmt9cOG7g2s2feG7h+G7heG7qTZ9cOG6scSpfeG7iXZ94butw6F94buDw7Xhu4V94bur4buZ4buFfeG7i+G7hWrhu4N94bqpazZq4buDfeG7qzh9auG6u2p94buL4buFauG7g31w4bq5feG6qeG7hX3huqvDtWrhu4cmfeG6q+G6seG7r33hu4k4feG7o3Hhu6/Dqmp94buhN+G6reG7g33huqk4auG7g33huq3hu4NrfeG6pzlqP31K4bq5cX3huqc5an3hu4k4fWrhu4fDueG7leG7hX3huqvDueG7l+G6rX1w4bufceG7r+G6u2p94bqtYcSpfeG7g+G7pWrhu4d94bqnxqHhu4V94bud4buDN3B9xKnhu4Vq4buDfeG6rcOyauG7h31q4buH4buD4bq9fcSp4buZ4buFfWrhu4PhurdwJn3EqTh94bqrbH3huq3hu4NmauG7g33hu4k4feG6q8OqfeG7h+G7hXLhu5194bqtN+G6rX3huqlrNmrhu4N9auG7h+G7g+G7heG6veG7nX3huqfDueG7meG6rX3hu6s4a31w4buD4bq5feG7h+G7heG7meG7hX1q4buD4bupauG7h33huq3hu5N94buDw7Xhu4UmfeG6q+G6seG7r33huq3Dumrhu4d94buJOH3hu6Nx4buvw6pqfeG7oTfhuq3hu4N94bqpOGrhu4N94bqt4buDa33huqc5aj8uL+G7nSEu4budfeG6reG7iTbhu6Hhu6Hhu7Z74bud4bqma+G6qeG7r3shSuG7hzbhu699cOG7n2tq4buHfeG7neG7g+G6s2p9XX3huq11Nn3huq1x4buNan3hu6E34bqt4buDJn1wN+G6rX3hu4fhu4VhfeG6q8OhfeG6reG7g2l94bufNn0wfcSp4bqxcX1w4buDceG6pWp94bqt4buTfeG6p2FqfeG7h+G7heG7qTZ9auG7g+G7qWrhu4d94buHZ33huq3hu4NyauG7h31wNn3EqWtq4buHfcSpceG7jWp94burOH3hu4M4auG7g33hu63GsD994bqqbH3hu4k4Jn3huq1ran1q4buHw7nhu5Xhu4V9cGfEqX3hu4vhu4XhurnEqX3hu6HFqX1q4buH4bqlcX3hu4Phu6Vq4buHfWrhu4PDuWrhu4d94buJOeG7hX3hu5/hurdwfeG6qeG6v33huqtrN2p94burOH3huq1r4buFfXDhu59uauG7h33hu6HFqX3huq3hu4PhuqHhuq194bqt4buD4bqhaip94bqta2p9auG7h8O54buV4buFfXDhu4Phurfhu6994bujcWFq4buHfeG6rTdrfeG7n+G6t3B94bud4buD4buF4bq7an3hu53hu4Phu6Xhuq19auG7g8O5auG7h33hu4k54buFfeG7oeG7l33huqdvfeG7ieG7myp94bqta2p9auG7h8O54buV4buFfcSpceG7jWp94bqtbH3hu6HFqX3hu4nFqTZ94bqt4buDbmp94burOH1wxal94bqpa31q4buDw7lq4buHfeG7iTnhu4V94bqp4bq/feG6p2h94bqt4buDazdq4buHfWrhu4fhu5fhu50qfeG6rWtqfWrhu4fDueG7leG7hX3huqdha33hu6vhur194buhxal94buf4buFw6lq4buHfXDDuX1q4buDw7lq4buHfeG7iTnhu4V94buL4buDw7Jq4buHfWrhu4fhu6dq4buHfeG7ocawfeG6qXRq4buHfeG6qeG7qX3hu4nhu4Xhur1xfeG6rTd9auG7g+G6sWp9auG7g8O5fcSpw7VwfXDhu4Phu6V9cOG7heG6u2p9cOG6vT994bqsbH3huqvhurlqfTV94bqrw7Vq4buHfeG7icWp4bqtfeG7rXHhurdwfeG7g+G7heG6vWp94buL4buD4buFfeG7neG7g2Hhu4V94bujceG7r+G6uXB94bqraGrhu4N94bqtN+G6reG7g33huq1xauG7h33huq3hurfhu519cOG7g8OyauG7h31w4buFan1q4buD4bqjxKl9cDfhuq194bqrw7Vq4buHfeG7g+G7heG6vXF94bujcWF94bqr4bq5an3hu6Nx4buv4bq5cH3huqtoauG7g33huq11Nn1q4buHw7nhu5Xhu4V9cOG7hcOpcX3huqlzauG7hyZ94bqtdH1w4buDw6olfeG6p+G7jeG7hX3huq1hauG7gyZ94bqraDZ94bqr4buFw6rEqSZ9cOG7g+G7leG7hX3hu4fhu4U2aiZ94buhxal9asO04buFfeG6p+G6tXAmfeG6qzfEqX3huqvDsmrhu4cmfXDhu4Phu5Xhu4V9cOG7heG6uXAmfeG7iWjhuq3hu4N94buhxrB94bqt4buDcX1w4bufZ2rhu4N9xKlxNn3hu6HhuqHEqSZ9cMO54buTauG7h31wN+G6rX3hu63DoX3hu4PDteG7hX3hu6s4feG7g+G7kWp94buD4buX4budfeG6rcOyauG7h31q4buH4buD4bq9Py4v4budIS7hu5194bqt4buJNuG7oeG7oeG7tnvhu53huqZr4bqp4buveyHhu5zhu4PhurNqfSJ94bqtdTZ94bqtceG7jWp94buhN+G6reG7g33huqvDoX3hu4l2feG7h+G7hWHhu4V9cOG7g3Hhu6/hurlwfeG7neG7g3Thuq0lfeG7oOG7peG6rX3EqTlq4buDfeG6rXU2feG7o3FhauG7h33huq03a33huqnhu4V94bqrw7Vq4buHfWrhuqPEqX3GoX3hu6HFqX3hu4vhurlwfeG7g+G7l+G7nX01feG6q8O1auG7h33hu4nFqeG6rX1w4bufw6lqP33hu4rhu4PDsmrhu4d9auG6u2p9cGFq4buHfWo4a31w4buDZuG6reG7g33hu4Phu5fhu5194bqrw6p94bur4buNan3hu4NsNn01feG6q8O1auG7h33hu4nFqeG6rX3hurfhu6994bqn4bqjauG7h33hu4vDqWrhu4N94bqp4buFfeG6q8O1auG7hz994bqq4buF4bq9an1w4buDaznhu4V94bqp4buFfeG6q8O1auG7h33hu4k4fcSpw7VwfeG6rcOyauG7h33huq10fXBx4buv4bq9cH3hu6vhu5Xhu4V94bqt4buDa31w4buF4bq54budfXDhu4NoJn3huq1sfeG7i+G7g2F9asOgauG7h31w4buN4buFfeG6qzZ94buDbDZ94buJ4buX4buFfWbhuq3hu4N94bqtdTZ9auG7h8O54buV4buFfXDhu4XDqXF94bqpc2rhu4c/feG6qGs2auG7g31q4buH4buD4buF4bq94budfeG6rWx9cOG7g8OqfeG6p+G7heG6uWp94bqt4buD4buF4bq54bqtfeG6q+G7heG6vWp9cOG7g2s54buFfeG6q+G7hX3huqvDtWrhu4d94bur4bq1an3hu4M4auG7g31q4buDw7l9xKnDtXB9auG7h8O54buV4buFfeG7hzfhuq194bqtw7Rq4buHJn1q4buHw7nhu5Xhu4V94bujcWFqfeG7h+G7hTZ9xKk4feG7i+G7g8OyauG7h33hu53hu4Nh4buFfeG7iTh9xKnDtXB94buLxJF94bufZ2rhu4N94buf4bq14budP33huqpsfeG6reG7g+G6oeG6rX3huq3hu4PhuqFqfeG7iTh94bqr4buF4bq7cX3EqTh9cDfhuq194buH4buFYX3hu4bhu4Nr4buhYn3huqvDoX1qbOG7hX1w4bufa2rhu4d94bqt4buDw7nhu5Nq4buHfSI/Li/hu50hLuG7nX3huq3hu4k24buh4buh4bu2e+G7neG6pmvhuqnhu697IeG7nOG7g+G6s2p9IH3hu4k4fcSpw7VwfeG7ocWpfeG7g2N9xKnGoX3hu6vhurt94bqn4bul4bqtfXDhu582auG7g31ww7nhu5Nq4buHfeG7iTbhu4V9xKk4fXA34bqtfeG7h+G7hWF94bqrw6F94burZX3hu582feG6qcWpNn1w4bufw6lqfWrhu4fhu4Phu4XDqWp94bqt4bulcX3huq11Nn3EqWdq4buDP33huqhrNmrhu4N9auG7h+G7g+G7heG6veG7nX3huq1sfXDhu4PDqn1w4buFw6lqfeG6q2s3an3huq3hu4NmauG7g33hu6034bqtfeG7g+G7k2p94buDOGrhu4N94bur4buFfeG6rXU2fWrhu4fDueG7leG7hX3huqlzauG7hz994buKY2t9cOG7g2JrfeG6q2x94buJOH1q4buD4bupauG7h33hu4lrfWrhu4c54buFfeG7q+G6u33hu6vhurdqfeG6q+G6u33huqdha33EqeG6tXB9cOG7g8OyauG7h31w4buFan3huq1hfWrhu4fDueG7leG7hX3huqlzauG7h33hu6s4feG6qWs2auG7g31q4buH4buD4buF4bq94budP33huqrhu4Xhur1qfXDhu4NrOeG7hX3huqnhu4V94bqrw7Vq4buHfeG7oWV94buH4buFcuG7nX3hu61rNn3huqlocX3hu5/hurdwfWrhu4Phu4XhurtxfcSp4bqxcX1w4buDceG6pWo/fVDhu59rauG7h33huq1xw7Xhuq194buh4buNauG7h33huq1sfcSpccOyan3hu6s4an1wZ2rhu4N94buDceG7jWrhu4d9xKnGoX3hu582Jn3huq1xw7Xhuq194buh4buNauG7h33huq11Nn3huq3hu4NyauG7h31wNn3huqvhurtxfeG6rWx9cOG7g8OqfeG6q8O54buX4bqtfeG6rWHhu4V9cOG7g+G7heG6vWp94bqrN2rhu4d94buLw6p9auG6uXF94bqt4buDcmrhu4d9cDZ9cOG7g+G6t3F94buD4buFw6pxfeG7qzh94buL4buDNuG7hX1w4buDN+G6rX3huqvDueG7l+G6rX3hu6Hhu6Xhuq19xKk5auG7g33huq3hu4PDuTZ94buL4buDNuG7hX3hu53hu4M3feG6rXU2fWrhu4fDueG7leG7hX3hu4c34bqtfeG6rcO0auG7h33hu4M24buvfWrhu4fDueG7leG7hX3hu6NxYWp94buH4buFNn1w4bufa2rhu4d9cHLhu4V94bqtdTZ9xKlnauG7gz994bqoc33huqc5an3hu4M24buvfeG6q+G7k2p94buraH3huq11Nn3huqc5an3huq1sfWrhu4PhurVqfXDhu4Phu6Xhuq194bqr4buF4bq7cX3hurfhu6994buDNuG7r33huq3hu4PDuTYmfXDhu4NnfXDDueG7k2rhu4d94buJNuG7hX3hurfhu6994bqtw7pq4buHfeG6q8OhfXDhu4PFqeG6rX3hu6HFqX3huqfhuqFwfeG6q+G6s3E/Li/hu50hLuG7nX3huq3hu4k24buh4buh4bu2e+G7neG6pmvhuqnhu697IcagfXDDueG7k2rhu4d94buJNuG7hX3hurfhu68mfeG6rWx9xKnDtXB9auG7h8Oy4buFfeG7iThq4buHfXBrOGp94bqt4bqzcSZ94bqta2p9auG7h8O54buV4buFfeG7i+G6uXB9auG7jeG7hX3hu6vhu5nhu4V9auG7gzZxfWrhu4M2auG7g33hu4Phu5NqJn1w4buDceG6tWp9cOG7heG6vWp94buD4buTaj99UHHhu699auG7g+G7hcOpaiZ94bqta2p9auG7h8O54buV4buFfeG6rcO6auG7h33huq3hurNqfWrhu5F94buJxanhuq194buD4buTaj99SuG7h8O54buV4buFfXDhu4XDqXF94bqpc2rhu4d94bqt4bqzan1wZ8SpfeG6rTfhuq3hu4N9cOG7jXB94buD4buTan3huqvDqn3huq3hurFqfeG6p+G6o2rhu4d94bqtccO14bqtfeG7oeG7jWrhu4d94bqtN31q4buD4bqxan3hu6s4feG6rcOyauG7h31q4buH4buD4bq9feG6qeG7hX3huqvDtWrhu4c/feG7gm594buhZX3hu53hu4Nh4buFfeG7h+G7heG7qX3huq3hu4Phu4Xhurnhuq194bqt4buDZzZ94buL4buDbDZ94bujceG7r+G6uXB94bqraGrhu4N9xKlnauG7g33huqtsauG7h33hu4M24buvfcSpxqF94buhxal94buf4buFw6lq4buHfXDDuX3huqnhu6l94buJ4buF4bq9cX3huq03fWrhu4PhurFqP33huqxtan3huq034bqtfeG6qWs2auG7g31q4buH4buD4buF4bq94budJn3hu6FlfeG6reG6s2p94bud4buDYeG7hX3hu4nDuXF9dn1w4bufN+G6reG7g31q4buD4buF4bq9xKl94burOH3hu6s24buFfXDhu59tfeG6rXU2fcSpZ2rhu4M/fVDhu59rauG7h31w4buD4bq5feG7h+G7heG7meG7hX3huq3hu4M5xKl94bqr4bqz4buvfXDhu4XhurvEqX1qw6Bq4buHfeG6t+G7ryZ9auG6uXF94buDNuG7hX3huqfDqWp94bqr4bq7cX3hu4Nu4bqtfeG6q8O54buX4bqtfeG7h+G7hTd9cOG7n2h94bqtdTZ94bur4buF4bq94bqtfXDDsmp94bur4buFauG7g33hu6HFqX3huq02xKl94buL4bq5cH3hu6s4feG6rXNq4buHfWrhu4M2cX3hu4vhu4XDqsSpfeG7oWs3cH3huq034bqtfXDhu4Phurl94buJxanhuq194bqrw6p94bqp4bqlan3huqnhuqFwfWrhurtqfeG7i+G7hWrhu4N9cOG6uX3huqnhu4V94bqrw7Vq4buHfXDhu4NnfeG6reG7g+G6oeG6rX3huq3hu4PhuqFqfXDhurfEqX1wazZqfeG7oWV94bqrw7nhu5fhuq194burZX3huqfhuqNq4buHfcSpYWrhu4d9xKk4cX1ww7nhu5Phu4V94buhN2rhu4d9auG7g+G6t3A/fUrhu4PhurdwfeG6q2hq4buDfeG7iTh94bur4bq14buvJn3hu6s4fXA34bqtfeG7h+G7hWF94bqtw7pq4buHfeG7iXHDsmp9xKlrauG7h31q4buDw7l94bur4bq14buvPy4v4budIS7hu5194bqt4buJNuG7oeG7oeG7tnvhu53huqZr4bqp4buve33hu6Fw4buv4buJYuG7tntwYuG7rXAtNuG7ieG7heG7h2olfeG7n+G7heG7h+G7g3AqeyEu4buhcOG7n2tq4buHIUrhu4dx4buv4bq/an3hu4LDueG7lWrhu4cuL+G7oXDhu59rauG7hyEuL+G7nSE=


 {name} - {time}

 Trả lời

{body}
 {name} - {time}
{body}

0 bình luận

Ý kiến của bạn sẽ được biên tập trước khi đăng. Vui lòng gõ tiếng Việt có dấu
Chia sẻ thông tin với bạn bè!
Tắt [X]